Drought and Coastal Ecosystems: An Assessment of Decision Maker Needs for Information

Kirsten Lackstrom, Amanda Brennan, Kirstin Dow

Carolinas Integrated Sciences & Assessments, University of South Carolina

Fifth Interagency Conference on Research in the Watersheds
North Charleston, SC
March 2-5, 2015

Outline

- Overview of the NIDIS-Coastal Carolinas pilot
 - What is coastal drought?
- Decision maker interviews
 - Impacts and stressors
 - Information needs
- Pilot projects

Overview of the NIDIS-Coastal Carolinas pilot

National Integrated Drought Information System

- Information and tools to monitor and forecast drought
- Stakeholder engagement, communications, outreach

Regional Drought Early Warning System Pilot Programs

Drought in the Southeast

Southeast U.S. (AL, FL, GA, NC, SC, VA) Drought Conditions, Percent Area, 2000-present

Source: http://droughtmonitor.unl.edu/MapsAndData/WeeklyComparison.aspx

Intensity:

D0 Abnormally Dry D1 Moderate Drought D2 Severe Drought D3 Extreme Drought

D4 Exceptional Drought

Drought

- "less rainfall than is expected over an extended period of time, usually several months or longer"
- "a deficiency of rainfall over a period of time, resulting in a water shortage for some activity, group, or environmental sector"

http://drought.unl.edu/Drought Basics/Glossary.aspx

http://drought.unl.edu/DroughtBasics/TypesofDrought.aspx

Why a pilot program about drought and coastal ecosystems?

- Need to expand our understanding of drought beyond the four categories typically used:
 - Meteorological
 - Agricultural
 - Hydrological
 - Socioceonomic
- "Ecological drought"
 - Water deficiency causing stress to plants, animals, ecosystems
- Document and improve understanding of impacts
 - Inform the development of mitigation strategies
 - Improve understanding of how and what to monitor

- Lack of rainfall in the coastal region itself
- Lack of freshwater inflow from upstream
- Interactions with tidal regimes

From Gilbert et al. 2012. The Impact of Drought on Coastal Ecosystems in the Carolinas

• From Gilbert et al. 2012. The Impact of Drought on Coastal Ecosystems in the Carolinas

- http://www.watereducation.org/western-water-excerpt/finding-right-balance-managing-delta-salinity-drought
- http://franklin.ifas.ufl.edu/uf-oyster-recovery-team/

Why drought and coastal ecosystems?

- Drought is a significant stressor to coastal ecosystems, but ecological/drought information has not been systematically integrated into drought monitoring and response
- Available information is diverse, but not comprehensive
 - By ecosystem
 - How drought is defined and characterized
 - Temporal dimensions (seasonal v. multi-year events)
 - Episodic impacts v. broader, systemic change

Interviews with local decision makers

Why interviews?

To learn first-hand about

- On-the-ground drought impacts in coastal regions of the Carolinas
- Mechanisms for coping with drought impacts
- Drought information use and needs

2 sets of interviews

- March-June 2013
 Beaufort County, SC
- Oct-Nov 2013
 Carteret County, NC

Interviews

Who we interviewed

- Commercial fisheries businesses (n=13)
 - Shrimpers, crabbers, other commercial fishermen
 - Seafood houses
- Recreational fishing businesses (n=6)
 - Fishing guides, charter boats
- Fishing research and extension (n=6)
- Outdoor recreational businesses (n=6)
 - Kayakers, ecotourism companies
- Land/refuge managers (n=11)
 - National Wildlife Refuges
 - Public and private parks and preserves
 - National Estuarine Research Reserves

Analysis of drought impacts: What are we looking for?

Indirect impacts on species, ecosystems

Interactions with other climate, biological, and human stressors

Secondary, indirect impacts to individuals, businesses, organizations Responses & adaptations by affected groups

Direct physical impacts

- Coastal drought, as articulated by interviewees, primarily involves
 - 1) changes to water quality conditions, particularly increasing salinity levels and fluctuations
 - 2) changes in the availability and timing of freshwater to support animals, plants, and habitats

Cascading impacts (refuge management example)

Direct impacts

Water quality conditions, salinity

Freshwater inputs, water levels

Soil conditions

Indirect (ecological) impacts

Stressed vegetation

Species composition changes and shifts

Increased fire risk

Interacting stressors

Human: water management, land use

Weather/climate: local conditions, sea level rise Biological: invasive species

Socioeconomic impacts

More difficult to manage refuges for optimal conditions

Fishing and hunting events cancelled; local businesses affected

Responses

Balance competing interests and priorities

Long-term monitoring and adaptation projects

Federal Policies and Priorities

Conservation and management of fish, wildlife and plants and their habitats Compatible wildlife-dependent recreational uses (e.g., hunting, fishing, wildlife observation and photography, environmental education and interpretation)

Government

Weather

- Precipitation patterns
- · Extreme events

Saltwater intrusion

Climate Variability

Sea level rise

Weather/Climate

Refuge-specific Factors

Ownership and management of neighboring (e.g., private) lands Coordination with state (or other) agencies Existing water control structures, pumping equipment Topography Invasive species Available resources to implement monitoring and long-term projects (staff, funding)

Refuge Context,

Use Management

- Hunting and fishing events
- · General public access and use

Habitat Management

- Prescribed burning
- · Pond water levels and maintenance

- Adaptive management
- · Development and implementation of projects to adapt to climate change

Operational

Seasonal

Annual

Long Term

Short-term

Long-term

Information use and needs for a drought early warning system (all groups)

Drought matters

- But, limited use of existing information and tools
- Concerns about impacts are:
 - Sector-specific
 - Context-dependent
 - local variability and diversity, "micro-climates"

Salinity matters

Extremes matter

- Timing, duration, seasonality of drought and other events
- Flooding and "drought busters"

Information use and needs for a drought early warning system (refuge managers)

- Site-specific monitoring
- Greater use of external information
- Partnerships with peer groups and colleagues

Needs:

- Fit with decision time frames
 - seasonal, annual, >1 year
- Baseline data
 - what is "normal" (e.g. frequency of drought events, recovery periods, groundwater recharge rates)
- Ecological indicators
 - link biological impacts, thresholds, and responses
- Early warning, seasonal forecasts might be useful

Ongoing pilot projects

NIDIS-Coastal Carolinas projects

- Coastal drought index (CDI)
 - Based on USGS salinity and streamflow data
 - Paul Conrads (USGS SC Water Science Center)
- Indicators and indices of drought in southeastern coastal ecosystems
 - Work with refuge managers to characterize ecological drought
 - Relate ecosystem impacts to the CDI, develop triggers and thresholds
 - Dan Tufford (CISA), David Chalcraft (East Carolina Univ.)
 - Assessment of drought indicators for coastal zone fire risk
 - Which drought index is the best indicator of fire risk in coastal organic soils?
 - Ryan Boyles (NC State Climate Office)
- Forecasting blue crab distributions using an individual-based population model (IBM)
 - Links freshwater discharge data with an IBM to forecast blue crab abundance and landings
 - Michael Childress (Clemson University)

Atlas of Hydroclimate Extremes for the Carolinas

CISA team, collaborative project

Annual precipitation totals during the driest year on record (1895–2013) for each 4 x 4 km pixel across the Carolinas region

For more information, visit:

http://www.drought.gov/drought/regionalprograms/coastalcarolinas/coastal-carolinasprojects

http://www.cisa.sc.edu/coping.html

Kirsten Lackstrom

Research Associate, Carolinas Integrated Sciences & Assessments Department of Geography, University of South Carolina Columbia, SC

(803) 777-3463

Lackstro@mailbox.sc.edu

www.cisa.sc.edu

